
Approved for public release;
distribution is unllmited.

Title:

Author(s):

Submitted to,

'd Los Alamos

4RCHITECTURAL SUPPORT FOR SYSTEM SOFTWARE
3N LARGE-SCALE CLUSTERS

Kei Davis, m, CCS-3
Eitan Frachtenberg, CCS-3
Fabrizio Petrini,
Jose C. Sancho,

International Conference on Parallel Programming

N A T I O N A L L A B O R A T O R Y
Los Alamos National Laboratory, an affirmatlve action/equal opportunity employer, is operated by the Unlverslty of California for the US.
Department of Energy under contract W-7405-ENG-36. By acceptance of thls article, the publlsher recognltes that the U.S. Qovernment
retains a nonexclusive, royalty-free license to publlsh or reproduce the published form of this contrlbution, or to allow others to do So, for US.
Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the
auspices of the U S . Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to
publish; as an Institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee Its technical correctness.

Form 836 (8/00)

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544
Phone: (505)667-4448
E-mail: lwwp@lanl.gov

Architectural Support for System Software on Large-Scale Clusters*

Juan Ferniindez1i2

'Departamento de Ingenieria y
Tecnologia de Computadores

Universidad de Murcia
3007 1 Murcia (Spain)

Eitan Frachtenberg', Fabrizio Petrini',
Kei Davis' and Jose C. Sancho'

'CCS-3 Modeling, Algorithms, and Informatics
Computer and Computational Sciences Division

Los Alamos National Laboratory
Los Alamos, NM 87545 USA

{peinador}@ditec.um.es {eitanf,fabrizio,kei,jcsancho}@lanl.gov

Abstract

Scalable management of distributed resources is one of
the major challenges in deployment of large-scale clusters.
Managetnent includes transparent fault tolerance, eficient
allocation of resources, and support for all the needs ofpar-
allel computing: parallel I/O, deterministic behavior; and
responsiveness. Meeting these reqkirements with commod-
ity hardware and operating systems is dificult because they
were not designed to support global management of a large-
Fcale system. In this paper we propose a small set of hard-
ware mechanisms in the cluster interconnect to facilitate the
implementation of a simple yet powerful global operating
sysiem. This system, inspired by concepts from the BSP and
SIMD computational models, allows commodity clusters to
grow to thousands of nodes while still retaining the usabil-
ity and responsiveness of the single-node workstation. Our
results on a software prototype show that it is possible to
implernerit eficient and scalable system software using the
proposed set of mechanisms.

Keywords: Cluster computing, cluster operating system,
network hardware, debuggability, resource management,
fault tolerance.

1 Introduction

Although workstation clusters are a common platform
for high-performance computing (HPC), they remain con-
siderably more difficult to manage than single-node systems
or symmetric multiprocessors. Furthermore, as cluster size
increases, the role of the system software-essentially all of
the code that runs on a cluster other than the applications-
becomes increasingly more important. The system soft-

*This work is partially supported by the Spanish MCYT under
grant TIC2003-08154-CO6-03 and the U.S. Department of Energy through
Los Alamos National Laboratory contract W-7405-ENG-36

ware's main components include the communication li-
brary, resource manager, parallel file system, system moni-
tor, and the infr-astructwre to implement fault tolerance. The
quality of the syitem software not only affects application
performancegbui also the cost of ownership of such ma-
chines. . :

System software design for high-performance clusters
traditionally relies on an abstraction that views the network
simply as a mechanism for moving information with a per-
formance expressed by latency and bandwidth. The success
of this interface relies on the implicit assumption that. any-
performance improvement in the network is directly inher-
ited by the system software. On the 'other hand, abstract
interfaces may change to exploit new hardware capabilities.
For example, in the last decade this basic abstract interface
has been augmented to exploit distributed shared memory.
A global, virtually addressed shared memory which enables
remote direct memory access (RDMA) is now a common
feature in networks as Infiniband [181 or Quadrics [191.

In this paper we try to answer question of what hardware
features, and thus which abstract inteflace, should the inter-
connection network provide to the system software design-
ers? We argue that the efficient and scalable implementa-
tion of a small set of network primitives that perform global
queries and distribution of data is sufficient to support most
system software and user applications. These primitives can
be easily implemented in hardware with current technology
and can greatly reduce the complexity of most system soft-
ware. In a sense they represent the least common denomi-
nator of the various components of the cluster software, and
the backbone to integrate a collection of local operating sys-
tems (OS) into a single, global OS.

This paper makes the following contributions. First, it
makes the case for the importance and the potential of hav-
ing these primitives for global coordination fully imple-
mented in hardware. Second, a series of case studies shows
how the system software can benefit from these primitives.

We provide experimental evidence that resource manage-
ment and job scheduling can can be implemented on thou-
sands of nodes and achieve the same level of responsiveness
as a dedicated workstation, without any significant increase
in complexity. Finally, we describe how a popular commu-
nication library, the Message Passing Interface (MPI), can
be implemented with these global coordination primitives.
The proposed implementation is so simple that it can run
almost entirely on the network interface card (NIC) as fast
as the production-quality MPI.

The rest of the paper is organized as follows. The next
section describes some of the system tasks required on clus-
ters and the problems that need to be addressed to achieve
responsive and scalable environments. Section 3 details the
core primitives and mechanisms that constitute the building
blocks of our proposed scalable system software. Section 4
presents several case studies and reports several experimen-
tal results obtained on our software prototype. Section 5
concludes and offers directions for future research.

2. Challenges in the Design of System Software

Many of today's fastest supercomputers are composed
of commercial off-the-shelf (COTS) symmetric multi-
processor (S M P) servers connected by a fast interconnect.

Fc-' These node3 IypidallJ us? EommGdity operating systems
such as Linux to provide a hardware abstraction layer to
programmers and users. These OSes are quite adequate for
the development, debugging, and running of applications
on independent workstations and small clusters. However,
such a solution is often insufficient for running demanding
HPC applications in large clusters.

Common cluster solutions include middleware exten-
sions on top of the workstation operating system, such as
the MPI communication library [22] to provide some of the
functionality required by these applications. These compo-
nents tend to have many dependencies and their indepen-
dent designs may lead to redundancy of functionality. For
example, both the communication library and the parallel
file system used by the HPC applications implement their
own communication protocols. Even worse, some desired
features such as multiprogramming, garbage collection, or
automatic checkpointing are either not supported at all or
are very costly in terms of both development costs and over-
all performance degradation. Consequently, there is a grow-
ing gap between the services enjoyed on a workstation and
those provided to HPC users, forcing many application de-
velopers to complement these services in their application.
Table 1 overviews several of these gaps in terms of the ba-
sic functionality required to develop, debug, and effectively
use parallel applications. Next we discuss some of the gaps
in detail.

Job launching. Virtually all modern workstations allow
simple and quick launching of jobs, thus enabling inter-
active tasks such as debugging sessions or visual applica-
tions. In contrast, clusters offer no standard mechanism
for launching parallel jobs. Typical workarounds rely on
shell scripts or custom middleware. Job launching times
can range anywhere from seconds to hours and are usually
far from interactive. Many solutions have been suggested,
ranging from the use of generic tools such as rsh and NFS,
to sophisticated programs such as RMS [9], GLUnix [12],
Cplant [3], BProc [13], and SLURM [15]. However, be-
cause of their reliance on software mechanisms, with larger
clusters (thousands of nodes) these systems may be ex-,
pected to take many seconds or minutes to launch parallel
jobs. t I ,

Job scheduling. In the workstation wor,ld
granted that several applications can be9 ru
using time sharing, but this is rarely the ca
ters. Most middleware used for parallel job .scheduling use
simple versions of batch scheduling (ortgaCgscheduliflg at
best). This affects both the user's experience of the ma-
chine, which is less responsive and interactive, and the sys-
tem's utilization of available resources! 'Even sytrems that
support gang scheduling typically revert 'td.relatively high
time quanta to hide the high overhead'cdsts associated with
context switching a parallel job [I 1, 14,-23]?''-'''. """

. > . . .

- t I r ,'
,. , $ \ . j "

. , I ; .;-, i !:!; . 8 I

-) l l l 'p, , , I , , . "..,

Communication. User processes-running,!in .a ,worksta-
tion communicate with each other using standard inter-
process communication mechanisms provided by the OS.
While these may be rudimentary mechanisms that provide
no high-level abstraction, because of their low synchroniza-
tion requirements they are adequate for. serial and .coarse-
grained distributed jobs. Unlike these jobs, .HPC applica-
tions require a more expressive set of communication tools
to keep the software development effort man'ageable.

The prevailing communication model for.:modern HPC
applications is message passing, where.processes. use a
communication library to send synchronous,. and, asyn-
chronous messages to each other. Of these ,libraries, the
most commonly used is MPI [22]. These libraries offer
standards that facilitate portability across various cluster
and MPP architectures. However, in order to improve the
latency and bandwidth for single messages, much effort is
required to tune these libraries to different platforms. An-
other problem is that these libraries offer low-level mech-
anisms that force the software developer to focus on im-
plementation details, and make modeling application per-
formance difficult. In order to simplify and abstract the
communication performance of applications, various per-
formance models have been suggested [6,24].

2

Table 1. System tasks in workstations and clusters
Characteristic Workstation Cluster

Job Launching Operating system (OS)
Job Scheduling Timeshared by OS

Communication OS-supported standard IPC mecha-

Storage Standard file system Custom parallel file system
Debuggability Standard tools (reproducibility) Parallel debugging tools (non-determinism)
Fault Tolerance Little or none Application / application-assisted checkpointing

Scripts, middleware on top of OS
Batch queued or gang scheduled with large quanta
(seconds to minutes) using middleware
Message Passing Library (MPI) or Data-Parallel
Programming (e.g. HPF) nisms and shared memory

Determinism. Serial applications are much easier to de-
bug than their parallel counterparts: their inherent determin-
ism makes many problems easy to reproduce. In contrast,
for a large parallel program a trace of message passing may
have a practically unbounded number of correct ordering;
the difficulty of debugging an inherently non-deterministic,
asynchronous system is exacerbated by interference by the
debugging tool itself by imposing constraints on execution
order (reduces non-determinism).

Fault tolerance. Non-determinism also makes fault toler-
ance using checkpointing challenging because the applica-
tion is rarely known to be in a state wherein all processes
and in-transit messages are synchronized. Fault tolerance
on workstations is not considered a major problem and thus
rarely addressed by the OS. On large clusters, however,
where the high number of components results in a low mean
time between failures, and the amount of computation in-
vested in a single execution of an application can be sig-
nificant, fault tolerance becomes one of the most critical is-
sues. Here there is no standard solution available, and many
of the existing solutions rely on modifying applications or
introduce a considerable application slowdown [2] .

2.1 Designing a Parallel Operating System

The design, implementation, debugging, and optimiza-
tion of system middleware for large-scale clusters is far
from trivial, and potentially very time- and resource con-
suming. System software is required to deal with one or
more parallel jobs comprising thousands of processes each.
Furthermore, each process may have several threads, open
files, and outstanding messages at any given time. All these
elements result in a large and complicated global machine
state which in turn increases the complexity of the system
software. The lack of global coordination is a major cause
of the non-deterministic nature of parallel systems. The
lack of synchronization also diminishes application perfor-
mance, for example, when non-synchronized system dle-
mons introduce computational holes that can severely skew

and impact fine-grained applications [20].
To address these issues, we promote the idea of a simple,

global cluster OS that makes use of advanced network re-
sources, just like any other HPC application. Our vision is
that a cluster OS should behave like a SIMD application,
performing resource coordination in lockstep. We argue
that performing this t?sk scalably and at sub-millisecond
granularity requires hardware support realizable by a small
set of network mechanisms. Our goal in this study is to
identify and describe these mechanisms. Using a prototype
system on a network that supports most of these features,
we present experimental results thFt indicate that a cluster
OS can be scalable, powerful, and, relatively simple to im-
plement. We also discuss the gaps ,between our proposed
mechanisms and the available hardware, and suggest meth-
ods for overcoming these’limitations.

3 Core Primitives and Mechanisms

In this section, we characterize the primitives and mech-
anisms that we consider essential in the development of sys-
tem software for large-scale clusters. We then explain how
to use these mechanisms to overcome the challenges raised
in the previous section.

3.1 Suggestea Mechanisms

The proposed architectural support consists of just three
hardware-supported network primitives:

XFER-AND-SIGNAL Transfer (PUT) a block of data from
local memory to the global memory of a set of nodes
(possibly a single node). Optionally signal a local
and/or a remote event upon completion. By global
memory we refer to data at the same virtual address on
all nodes. Depending on implementation, global data
may reside in main or network-interface memory.

TEST-EVENT Poll a local event to see if i t has been sig-
naled. Optionally, block until it is.

COMPARE-AND- WRITE Arithmetically compare a
global variable on a node set to a local value. If the
condition is true on all nodes, then (optionally) assign
a new value to a (possibly different) global variable.

Note that XFER-AND-SIGNAL and COMPARE-AND-
WRITE are both atomic operations. That is, XFER-AND-
SIGNAL either PUTS data to all nodes in the destina-
tion set (which could be a single node) or (in case of
a network error) no nodes. The same condition holds
for COMPARE-AND-WRITE when it writes a value to a
global variable. Furthermore, if multiple nodes simultane-
ously initiate COMPARE-AND-WRITES with identical pa-
rameters except for the value to write, then, when all of
the COMPARE-AND-WRITES have completed, all nodes
will see the same value in the global variable. In other
words, XFER-AND-SIGNAL and COMPARE-AND-WRITE
are sequentially consistent operations. TEST-EVENT and
COMPARE-AND-,WRITE are blocking operations, while
XFER-AND-SIGNAL is non-blocking. The only way to
check for completion is to TEST-EVENT on a local event
that .XFER-AND--SIGNAL signals. These semantics do not
dictate whethereithe mechanisms are implemented by the
host CPU or by a network co-processor. Nor do they re-
quirejthat TEST-EVENT yield the CPU (though it may be

3.2 ' Implementation and Portability .

tdvantageous to do so). I l l

. I

The three primitives presented above assume that the
* network hardware provides global, virtually addressable
shared memory and RDMA. These features are present in
several state-of-the-art networks like QsNet and Infiniband
and their functionality has been extensively studied [18,191.
While the physical implementation aspects of these primi-
tives are outside the scope of this paper, we note that some
or all of them have have already been implemented in sev-
eral other interconnects, as shown in Table 2. They were
originally designed to improve the communication perfor-
mance of user'applications. To the best of our knowledge
their usage as an infrastructure for system software was not
explored before this work.

Hardware support for multicast messages sent with
XFER-AND-SIGNAL is needed to guarantee scalability for
large-scale systems. Software approaches, while feasible
for small clusters, do not scale to thousands of nodes. In our
case, QsNet provides hardware-supported PUT/GET opera-
tions and events so that the implementation of XFER-AND-
SIGNAL is straightforward.

COMPARE-AND-WRITE assumes that the network is
able to return a single value to the calling process regard-
less of the number of queried nodes. Again, QsNet includes
a hardware-supported global query operation that allows the
implementation of COMPARE-AND-WRITE.

Table 2 shows the expected performance of the mecha-
nisms that are already implemented by several interconnect
technologies. While several networks already support at
least some of these mechanisms, we argue that they should
become a standard part of every large-scale interconnect.
We also stress that their implementation must exhibit scal-
ability and high performance (in terms of bandwidth and
latency) for them to be useful to the system software.

Table 2. Measured/expected performance of
the core mechanisms for n nodes

'

t 1 ,

Network COMPARE (ps)' ' XFER (MB/s)

Gigabit Eth.ernet [21] 46 log n rJbt axailable
Myrinet [4,5] 20 log n N 15n
Infiniband [181 20 log n Not available'
Q S N ~ ~ ~ 1 9 1) < 10 ., . > 150n

BlueGeneL [13 < 2 700n
I : ' I . : . _ I $ ' .!iCJ

. , \ ' ' :!. :.>; *.;I; % ! ; t i .
> I I .

3.3 System Software Requirement3 . , ailibSolutions I

'Next we examine the areas where .currend 'kydtdm soft-
ware is lacking and explain how the' pi%po$&d 'm&kiankms
can simplify the design and implementation of pracfical so-

i ? f w $ y j ~ ~ ; . ; : < ; i '

lutions. Table 3 summarizes these arguments.-

, . . , , L ' : I ' ' > ' > , , . , .
,' I , .: I / .,!,

f'" , '31 C,' il'!I>i
Job Launching The traditional appro?ch!,to Job Jaunch-
ing, including the distribution of executable and data files
to cluster nodes, is a simple extension of single-node job
launching: data is transmitted using network file systems
such as NFS, and jobs are launched with scripts or simple
utilities such as rsh or mpirun. These methods do not scale
to large machines where the load on the network file system,
and the time it would take to serially execute a binary on
many nodes, make them inefficient and ippracFica1. Several
solutions have been proposed for this problem, ali focusing
on software tricks to reduce the distribution time. For.exam-
ple, Cplant and BProc both use thei;,own ,tree-based algo-
rithm to distribute data with latencies that are logarithmic in
the number of nodes [3, 131. While more portable than re-
lying on hardware support, these solutions are significantly
slower and not always simple to implement [lo].

Decomposing job launching into simpler sub-tasks
makes more clear that it needs only modest effort to make
the process efficient and scalable:

0 Executable and data distribution are no more than a
multicast of packets from a file server to a set of nodes,
and can be implemented using XFER-AND-SIGNAL.

'Multicast is an optional operation in the Infiniband standard

4

Table 3. Network mechanisms usage
Characteristic

Job Launching

Job Scheduling

Communication

1 Storage
Debuggability

Fault Tolerance

Requirement Solution

Data dissemination
Flow control
Termination detection
Heartbeat
Context switch responsiveness
PUT
GET
Barrier
Broadcast
Metadata / file data transfer
Debug data transfer
Debug synchronization
Fault detection
Checkpointing synchronization
Checkpointing data transfer

XFER-AND-SIGNAL
COMPARE-AND-WRITE
COMPARE- AND - W RI TE
XFER-AND-SIGNAL
Prioritized messages / Multiple rails
XFER-AND-SIGNAL
XFER-AND-SIGNAL
COMPARE-AND-WRITE
COMPARE-AND-WRITE + XFER-AND-SIGNAL
XFER-AND-SIGNAL
XFER - AND - S IG N A L
COMPARE-AND- WRITE
COMPARE-AND-WRITE
COMPARE-AND-WRITE
XFER-AND-SIGNAL

We may use COMPARE-AND-WRITE for flow control
to prevent the multicast packets from overrunning the
available buffers.

message is propagated to the nodes using a software-based
multicast tree, increasing in latency as the cluster grows.
Finally, even though the system is able to efficiently con-

Actual launching of a job can be achieved simply and
efficiently by multicasting a control message to all the
nodes that are allocated to the job by using XFER-
AND-SIGNAL. In response the system software on
each node would then fork the new processes and wait
for their termination.

The reporting of job termination can incur much over-
head if each node sends a single message for every
process that terminates. This problem can be solved
by ensuring that all the processes of a job reach a
common synchronization point upon termination (us-
ing COMPARE-AND-WRITE) before delivering a sin-
gle message to the resource manager (using XFER-
AN D - S I G N A L) .

Job Scheduling. Interactive response times from a sched-
uler are ’required to make a parallel machine as usable as
a workstation. This in turn implies that the system must
be able to perform preemptive context switching with the
same latencies we have come to expect from single pro-
cessor systems, that is, on the order of a few milliseconds.
Such latencies are virtually impossible to achieve without
hardware support: the time required to coordinate a context
switch over thousands of nodes can be prohibitively large
in a software-only solution. A good example of this is the
Score-D software-only gang scheduler of Hori et nl. [14].
There the time for switching the network context on a rel-
atively small Myrinet cluster is more than two thirds of the
total context switch time. Furthermore, the context switch

text switch between different jobs, the coexistence of appli-
cation traffic and synchronization messages in the network
could unacceptably delay response to the latter. If this oc-
curs even on a single node for even just a few milliseconds it
will have a detrimental effect on the system responsiveness.

I To overcome these problems the network should offer
capabilities to the software scheduler for preventing these
delays. The ability to maintain multiple communication
contexts alive in the network securely and reliably, with-
out kernel intervention, is already implemented in some
state-of-the-art networks like QsNet. Job context switch-
ing can be easily achieved by simply multicasting, using
XFER-AND-SIGNAL, a control message to all the nodes in
the network. One method of guaranteeing quality of service
for synchronization messages is to have support for message
prioritization. The current generation of many networks, in-
cluding QsNet, does not yet support prioritized messages in
hardware, so a workaround must be found to keep the sys-
tem messages’ latencies low. In our case, we exploit the fact
that some of our clusters have dual networks (two rails), and
use one rail exclusively for system messages so that they do
not compete with application-induced traffic.

Determinism and fault tolerance. Even when a single
application is running (one network context, no preemp-
tion), messages can still be en route at different times and
the system’s state is not deterministic. When the system
globally coordinates all the application processes, parallel
jobs can be led to evolve in a controlled manner. Global
coordination can be easily implemented with XFER-AND-

5

SIGNAL, and can be used to perform global scheduling of
all the system resources. Determinism can be enforced by
taking the same scheduling decisions between different exe-
cutions. At the same time, the global coordination of all the
system activities helps to identify the states along the pro-
gram execution in which it is safe to checkpoint the status.

Communication. Most of MPI’s, TCP/IP’s, and other
communication protocols’ services can be reduced to a
rather basic set of communication primitives, e.g. point-to-
point synchronous and asynchronous messages and multi-
casts. If the underlying primitives and the protocol reduc-
tions are implemented efficiently, scalably, and reliably by
the hardware and cluster OS, respectively, the higher level
protocol can also inherit the same benefits of scalability,
performance, and reliability. In many cases, this reduction
is simple and can eliminate the need for many of the im-
plementation quirks of protocols that need to run on a va-
riety of network hardware. To illustrate this strategy we
have implemented a small subset of the MPI library, called
BCS-MPJ IS], ,which has sufficient functionality to support
real applications. As shown in the next section these appli-
cations have similar performance using BCS-MPI as using
production-quality versions of MPI, but have the potential
to benefit from the simplicity, determinism and scalability
of BCS-MPI. 1 ’,.

, , I I > ..,; 3 . ,.

..
To demonstrate our thesis that these mechanisms can

be exploited by a scalable global OS we built a prototype
resource-management system, called STORM, and tested it
on three architectures. In all cases we used the Quadrics
Elan3 network as our interconnect because it supports most
of the mechanisms described in Section 3. In this section
we review the performance and scalability that can be ob-
tained with these mechanisms on three tasks: job launching,
job scheduling, and deterministic communication.2

. .

4.1. Software Environment

Our prototype resource-management system is com-
posed of a set of damons that run on the compute nodes
and management node of a cluster [lo]. It contains a net-
work abstraction layer that uses the described mechanisms
for executing tasks such as job launching, process coordi-
nation (e.g. gang scheduling), and resource accounting. Al-
though currently implemented as user-mode damons, we
plan to fully incorporate the core functionality of STORM

*In [lo] we study in detail other properties of STORM’sjob scheduling
and job launching abilities, and model their scalability

with the Linux kernel to obtain optimal performance and la-
tencies. The code is relatively small at around 10,000 lines
of C for the core functionality.

In addition to resource management, the core primi-
tives can be used to implement almost any communica-
tion protocol while still retaining the advantages of perfor-
mance and determinism. Here we have implemented the
previously mentioned BCS-MPI. To use BCS-MPI applica-
tions simply need to be re-linked against the new libraries
without any code modification. However, to achieve the
best performance of BCS-MPI it can be beneficial to re-
place blocking communication calls such as MPI-SendO
and MPIRecv() with their non-blocking dounterparts. This
allows BCS-MPI to aggregate seve;al’Foi&AAication calls
together within the same timeslice wheneve: ’possible, so
improving the possibility of interleaving communication
and computation.

In the following case studies we used both synthetic and
real HPC applications. The applications SWEEP3D and
SAGE are representative of two hydrodynamics codes from

8 1 11,

! ,<’ $ 1 .,I i?Iyi;l7:!i ::, . ,
4.2. Hardware Environment , . , . , .’ , !’! 1, _ .

~ ~ ! ~ l l ;& :J., ;. , .
For the experimental evaluatiqn :wel; used)&wo differ-

ent clysters’ at LANJJCCS-~ to test ;o.tq.:Reghanisms on
different processor . . .> . :architectures. The clusters, are called
Crescendo and Wolverine. All clyiers used al’l28:port
Quadrics Elite switch and QuadricssoftwareLli6?dry version
1 S.0-0. Table 4 summarizes the hardware comprising each
cluster.

c 4 , I . I . 1

4.3. Job Launching

In this set of experiments we study the cost associated
with launching jobs with STORM and analyze STORM’S
scalability with the size of the binary and the number of PES
on Wolverine. We use the approach taken by Brightwell et
al. in their study of job launching on Cplant [3], which is
to measure the time it takes to launch run a program of size
4 MB, 8 MB, or 12 MB that then terminates immediately.

STORM logically divides the job-launching task into
two separate operations: the transmission of the binary
image, and the actual execution, which includes send-
ing a job-launch command, forking the job, waiting for
its termination, and reporting back to the machine man-
ager (MM). For the transmission of the binary images the
MM uses XFER-AND-SIGNAL for multicasting chunks and
COMPARE-AND-WRITE for flow control. To reduce non-
determinism the MM can issue commands and receive the
notification of events only at the beginning of a timeslice.
Therefore, both the binary transfer and the actual execu-
tion will take at least one timeslice. To minimize the MM

6

Table 4. Cluster Description
Component Feature Crescendo cluster Wolverine cluster

Node Number x PES 32 x 2 64x4
Memoryhode 1 GB 8GB
VO busednode 2 2
Model Dell PowerEdge 1550 Alphaserver ES40
os Red Hat Linux 7.3 Red Hat Linux 7.1

CPU Twe (meed) Pentium-I11 (1GHz) AlDha EV68 (833MHz)
I. . I

VO bus 5 p e 64-bit/66MHz PCI 64-biU33MHz PCI
Network NIC model 1 x QM-400 Elan3 2 x QM-400 Elan3
Software Compiler Intel CRortran v5.0.1 Compaq’s C Compiler

W

P 75

50

25

0 4 8 1 2 4 8 t 2 4 8 1 2 4 1 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2

1 2 4 8 16 32 64 128 256

Processors , .

Figure 1. Send and execute times for several
tile sizes on an unloaded system (Wolverine)

overhead and expose maximal protocol performance, in the
following job-launching experiments we use a small time
quantum of 1 ms.

Figure 1 shows the time needed to transfer and execute
a do-nothing program of sizes 4 MB, 8 MB, and 12 MB on
1-256 processors. Observe that the send times are propor-
tional to the binary size but grow only slowly with the num-
ber of nodes. This is explained by the scalable algorithms
and hardware mechanism that are used for the send opera-
tion. On the other hand, the execution times are quite inde-
pendent of the binary size but grow more rapidly with the
number of nodes. The reason for this growth is the skew,
mainly due to the OS, that is accumulated by the processes
of the job. In the largest configuration tested a 12MB file
can be launched in 1 lOms, a remarkably low latency.

Scalability Issues These job launching results are com-
parable to other systems in the literature for clusters of up
to a few hundreds of nodes (see Table 5) . Our premise is
that one of the main advantages of using hardware mecha-

Table 5. A selection of job-launch times (in
seconds) found in the literature

Software Job-launch time / program size

rsh 90 Minimal job on 95 nodes [121
RMS 5.9 12MB job on 64 nodes [101
GLUnix 1.3 Minimal job on 95 nodes [121
Cplant 20 12MB job on 1,010 nodes [3]
BPrW 2.7 12MB job on 100 nodes [13]
SLURM 4.9 Minimal job on 950 nodes [151
STORM 0.11 12MT3jobon64nodes[10]

nisms is that the resource manager can inherit the scalabil-
ity features of the hardware layer. To verify this property,
we have elsewhere presented a detailed model of STORM’S
job-launching scalability [lo]. In that work we have also
extrapolated the expected job-launching performance of the
software-based methods found in the literature. Not sur-
prisingly, the hardware-supported mechanisms of STORM
provide at least an order of magnitude better performance
on very large clusters. In fact, it is the only system that is
expected to deliver sub-second performance on thousands
of nodes.

4.4. Job Scheduling

STORM supports a variety of job scheduling algorithms
including various batch and time-sharing methods. Some
of the time-sharing methods require a global synchroniza-
tion message (strobe), which STORM implements using
XFER-AND-SIGNAL. We have chosen to focus our eval-
uation specifically on gang scheduling [7], which is one
of the most popular coscheduling algorithms. In partic-
ular we have studied the effect of timeslice on overhead.
Smaller timeslices yield better response time at the cost
of decreased throughput (due to scheduling overhead that
cannot be amortized). To measure this overhead, we use

7

c -

and communication are scheduled and the communication
requests are buffered. At the beginning of every timeslice
a partial exchange of communication requirements, imple-
mented with XFER-AND-SIGNAL and TEST-EVENT, pro-
vides the information needed for scheduling the communi-
cation requests issued during the previous timeslice. After
that all of the scheduled communication operations are per-
formed by using XFER-AND-SIGNAL and TEST-EVENT.

The BCS-MPI communication protocol is implemented
almost entirely in the network interface card (NIC). By run-
ning on the NIC's processor, BCS-MPI is able to overlap ,m the communication with the ongoing computation. The ap-

70

n 3 60

8 50

i::
20

3 g 10

0
0.1 1 10 100 lo00

Time quantum (ms)

Figure 2. Effect of time quantum wlth a multi-
programming level (MPL) of 2 on 32 nodes

SWEEP3D and a do-nothing synthetic program, and run
two copies of each concurrently, with different timeslice

- i y a b s : Figure 2 shows the average run time of the two jobs
for timeslice values from 3 W p to 8 seconds, running on
the entire Crescendo cluster: The smallest timeslice value
that the scheduler can handle gracefully is ~ 3 0 0 p s . any
less than which the node cannot process the incoming strobe
messages at the ratesthey arrive. With a timeslice as short
' as 2ms STORM can run multiple concurrent instances of
.' GWEEP3D with virtually no performance degradation over

a single instance of the appli~ation.~ This timeslice is an
order of magnitude smaller than the local Linux scheduler's
quanta, and is significantly smaller than the smallest time
quanta that conventional gang schedulers can handle with-
out significant performance penalties [9]. This, together
with brisk job launching, allows for workstation-class sys-
tem responsiveness on a large parallel system.

4.5. Communication Library

In the following experiments we demonstrate the perfor-
mance of BCS-MPI. Of interest here is the impact of BCS-
MPI's global synchronization of all the nodes in order to
schedule communication requests issued by the application
processes. We also provide and analyze some results com-
paring the performance of BCS-MPI to that of Quadrics
MPI, a production-quality implementation of MPI.

With BCS-MPI a global strobe is sent to all the nodes
(using XFER-AND-SIGNAL) at regular intervals. This
tightly couples all the system activities by requiring that
they occur at the same time on all nodes. Both computation

)This result is also influenced by the poor memory locality of
SWEEPJD-the lack of a small memory working set implies minimal ex-
tra penalty for a context switch.

plication's processes directly interact (transparently via the
BCS-MPI library) with threads running in the MC. When
an application process invokes a communication primitive,
it simply posts a descriptor in a region of NIC memory that
is accessible to a NIC thread. This descriptor includes all
the communication parameters which are needed to com-
plete the operation. The actual communication is performed
by a set of cooperating threads running in the NICs (using
XFER-AND-SIGNAL). In QsNet, these threads can directly
readlwrite fromlto the application process memory space
(RO copies to intermediate buffers are required). Moreover,
the posting of the descriptor is a lightweight operation, mak-
ing the entire overhead of the BCS-MPI call even lower than
that of the Quadrics MPI.
The communication protocol is divided into micro-

phases within every timeslice and its progress is also glob-
ally synchronized. To illustrate how BCS-MPI primitives
work, two possible scenarios for blocking and non-blocking
MPI primitives are described in Figure 3(a) and Figure 3(b),
respectively. In Figure 3(a), process P1 sends a message
to process P2 using MPISend and process P2 receives a
message from P1 using MPIXeceive: (1) P1 posts a send
descriptor to the NIC and blocks. (2) Pa posts a receive de-
scriptor to the NIC and blocks. (3) The transmission of data
from P1 to P2 is scheduled since both processes are ready
(all the pending communication operations posted before
timeslice i are scheduled if possible). (4) The communi-
cation is performed (all the scheduled operations are per-
formed before the end of timeslice a + 1). (5) PI and P2
are restarted at the beginning of timeslice a. (6) PI and P2
resume computation. Note that the delay per blocking prim-
itive is 1.5 timeslices on average. However, this penalty can
be usually be avoided by using non-blocking communica-
tions or by scheduling a different job in timeslice i + 1.
Figure 3(b) shows the same situation for non-blocking MPI
primitives. In this case, communication is completely over-
lapped with computation with no performance penalty.

In Figure 4(a) the runtime of SWEEP3D for both BCS-
MPI and Quadrics MPI is shown for various numbers of
processes on the Crescendo cluster. The effective overlap
between computation and communication along with the

8

Time slice i Time slice i+l Time slice i+2 --- Time slice i Time slice i+l Time slice i+2
--f--------)

P1

NlCl

NIC2

P2
6

P2

(a) Blocking MPISendlMPI-Receive (b) Non-Blocking MpISendMPI-Receive

Figure 3. Blocking and Non-Blocking MPI-Send/MPI-Receive Scenarios in BCS-MPI

n
I .

low overhead of its primitives allow BCS-MPI to slightly
outperform Quadrics MPI, with speedups of up to 2.28%.

Scalability Issues To complete the application study and
to gain a better understanding of BCS-MPI’s scalability,
we show SAGE’S performance on Crescendo with Quadrics
and BCS-MPI. Unlike SWEP3D, which requires square
configurations, SAGE can run on any number of nodes. Fig-
ure 4(b) shows the run time of SAGE on varying both the
number of nodes and the problem size, up to 62 (one node is
reserved for the MM). Both versions perform similarly be-
cause SAGE uses mostly non-blocking point-to-point com-
munication. Most notably, BCS-MPI performs slightly bet-
ter than Quadrics MPI for the largest configuration, which
indicates that the scalability of SAGE is not an issue with
BCS-MPI and this cluster size.

5. Conclusions and Future Work

In this paper we proposed a new abstraction layer for
large-scale clusters. This layer, which can be implemented
by as few as three communication primitives in the network
hardware, can greatly simplify the development of system
software. In our model the system software is a tightly-
coupled parallel application that operates in lockstep on all
nodes. If the hardware support for this layer is both scalable
and efficient the system software inherits these properties.
Such software is not only relatively simple to implement but
can also provide parallel programs with most of the services
they require to make their development and usage efficient
and more manageable. In particular, we discuss how this
abstraction layer can be used for the implementation of ef-
ficient, deterministic communication libraries, workstation-
class responsiveness, and transparent fault tolerance. We

have presented initial experimental results which demon-
strate that scalable resource management and application
communication are indeed feasible while making the sys-
tem behave deterministically. Our future work will expand
to incorporate transparent fault tolerance into the system
software. We also plan to explore other possible benefits
of a global operating system, such as coordinated parallel
YO and debugging. Lastly, we plan to migrate our code into
the Linux kekel. Such an integration should also improve
further the performance of the cluster operating system.

References

[l] Challenges in developing scalable scalable software for
Bluegena. In Scaling to New Heights Workshop, Pitts-
burgh, PA, May 2002.

[2] G. Bosilca, A. Bouteiller, F. Cappello, S. Djailali, G. Fedak,
C. Germain, T. Heradt, P. Lemarinier, 0. Lodygensky,
F. Magniette, V. Neri, and A. Selikhov. MPICH-V Toward
a Scalable Fault Tolerant MPI for Volatile Nodes. In Pro-
ceedings of IEEELACM Supercomputing 2002 (SC’02), Bal-
timore, MD, November 2002.

[3] R. Brightwell and L. A. Fisk. Scalable parallel application
launch on Cplant. In Proceedings of IEEWACM Supercom-
puling 2001 (SC’OI), Denver, CO, November 10-16,2001.

[4] D. Buntinas, D. Panda, J. Duato, and P. Sadayappan. Broad-
casVmulticast over Myrinet using NIC-assisted multidesti-
nation messages. In Workshop on Communication, Architec-
ture, and Applications for Network-Based Parallel Comput-
ing (CANPC ’00), High Performance Computer Architec-
ture (HPCA-6) Conference, Toulouse, France, January 2000.

[5] D. Buntinas, D. Panda, and W. Gropp. NIC-based atomic
operations on MyrineVGM. In SAN-I Workshop, High
Performance Computer Architecture (HPCA-8) Conference,
Boston, MA, February 2002.

9

I I I

3oL4 4 i6 25 36 49
Number of Processes

(a) Non-Blocking SWEEP3D (Crescendo)

[6] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E.
Schauser, E. Santos, R. Subramonian, and T. von Eicken.
hgP: Towards a realistic model of parallel computation.
In Proceedings of ACM SIGPLAN Symposium on Principles

' and Pmctice of Parallel Programming, pages 1-12, 1993.
' [7] D. G. Feitelson and L. Rudolph. Gang scheduling perfor-
ma? benefits for fine-grain synchronization. Jouml of

' P a d l e l 'and Distributed Computing, 16(4):36318, De-

, * * * I [SI J. Fernandez, F. Petrini, and E. Frachtenberg. BCS MPI: A
I . I .I I , New Approach in the System Software Design for Large-

.Scale Parallel Compters. In Proceedings of IEEUACM Su-

' 3 cember1W.

'. -' ~ &

r 131

percomputing 2003 (SC'03), Phoenix, AZ, November 2003.
E. Fracynberg, F. Petrini, S. Coll, and W. chun Feng.
Gang scheduling with lightweight user-level communica-
tion. In Proceedings of the 30th International Conference
on Parallel Processing (ICPP'Ol), Workshop on Scheduling
and Resource Management for Cluster Computing, Valen-
cia, Spain, September 2001.
E. Frachtenberg, F. Petrini, J. Femandez, S. Pakin, and
S. Coll. STORM: Lightning-Fast Resource Management. In
Proceedings of IEEUACM Supercomputing 2002 (SC'02),
Baltimore, MD, November 2002.
H. Franke, P. Pattnaik. and L. Rudolph. Gang Scheduling
for Highly Efficient Distributed Multiprocessor Syetems. In
Proceedings of the 6th Symposium on the Frontiers of Mas-
sively Parallel Computation (FRONTIERS '%), pages 1-9,
Ahnapolis, MD, October 1996.
D. P. Ghormley, D. Petrou, S. H. Rodrigues, A. M. Vahdat,
and T. E. Anderson. GLUnix: a global layer Unix for a net-
work of workstations. Software--Practice and Experience,
28(9):929-961, July 25, 1998.
E. Hendriks. BProc: The Beowulf distributed process
space. In Proceedings of the 16th Annual ACM Interna-
tional Conference on Supercomputing (ICs '02), New York,
NY, June 22-26.2002.
A. Hori, H. Tezuka, and Y. Ishikawa. Overhead analy-
sis of preemptive gang scheduling. In D. G. Feitelson and
L. Rudolph, editors, Job Scheduling Strategies for ParaNel
Processing, pages 217-230. Springer Verlag, 1998.

I

'"24 8 16 32 48 62
Number of Processes

(b) SAGE (Crescendo)

[15] M. A. Jette, A. B. Yoo, and M. Grondona. SLURM: Simple
linux utility for resource management. In D. G. Feitelson
and L. Rudolph, editors, Job Scheduling Strategies for Par-
allel Processing, pages 37-51. Springer-Verlag, 2003.

[16] D. Kerbyson, H. Alme, A. Hoisie, F. Petrini, H. Wasser-
man, and M. Gittings. Predictive Performance and Scalabil-
ity Modeling of a Large-Scale Application. In Proceedings
of IEEWACM Supercomputing 2001 (SC'Ol), Denver, CO,
November'2001:

[17] K. R. Koch, R. S. Baker, and R. E. Alcouffe. Solution of the
first-order form of the 3-D discrete ordinates equation on a
massively parallel prmssor. Transacrions of the American
Nuclear Society, 6,5(108): 198-199, 1992.

[18] J. Liu, J. Wu, D. K. Panda, and C. Shamir. Designing clus-
ters with Infiniband Early experience with Mellanox tech-
nology. Submitted for publication.

[19] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachtenberg.
The Quadrics Network High-Performance Clustering Tech-
mology. IEEE Micro, 22(1):46-57, JanuarylFebruary 2002.

[20] F. Petrini, D. Kerbyson, and S. Pakin. The Case of the Miss-
ing Supercomputer Performance: Achieving Ophmal Per-
formance on the 8,192 Processors of ASCI Q. In Pmceed-
ings of IEEUACM Supercomputing 2003 (SC'03), Phoenix,
AZ, November 2003.

[21] P. Shivam, P. Wyckoff, and D. Panda. EMP: Zero-copy OS-
bypass NIC-driven Gigabit Ethernet message passing. In
Proceedings of IEEWACM Supercomputing 2001 (SC'Ol),
Denver, CO, November 1&16,2001.

[22] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Don-
gama. MPZ: The Complete Reference, volume 1, The MPI
Core. The MIT Press, Cambridge, Massachusetts, 2nd edi-
tion, September 1998.

[23] Thinking Machines Corporation. NI Systems Programming,
1992. Version 7.1.

[24] L. G. Valiant. A Bridging Model for Parallel Computation.
Communications of the ACM, 33(8): 103-1 11, August 1990.

10

